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Abstract

Gait accelerometry is an important approach for gait assessment. Previous contributions have adopted

various pre-processing approaches for gait accelerometry signals, but none have thoroughly investigated

the effects of such pre-processing operations on the obtained results. Therefore, this paper investigated the

influence of pre-processing operations on signal features extracted from gait accelerometry signals. These

signals were collected from 35 participants aged over 65 years-old: 14 of them were healthy controls (HC),

10 had Parkinson’s disease (PD) and 11 had peripheral neuropathy (PN). The participants walked on a tread-

mill at preferred speed. Signal features in time, frequency and time-frequency domains were computed for

both raw and pre-processed signals. The pre-processing stage consisted of applying tilt correction and de-

noising operations to acquired signals. We first examined the effects of these operations separately, followed

by the investigation of their joint effects. Several important observations were made based on the obtained

results. First, the denoising operation alone had almost no effects in comparison to the trends observed in

the raw data. Second, the tilt correction affected the reported results to a certain degree, which could lead

to a better discrimination between groups. Third, the combination of the two pre-processing operations

yielded similar trends as the tilt correction alone. These results indicated that while gait accelerometry is a

valuable approach for the gait assessment, one has to carefully adopt any pre-processing steps as they alter

the observed findings.
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1. Introduction

Maintaining balance is a challenging activity for the human body, which is an unstable system if not

continuously controlled [1], and an increased impairment of the balance control system corresponds to an

increase of gait impairments [2, 3]. This highlights the need for clinicians to assess patients’ gait. Clinicians

attempt to accurately describe the health state of a patient via gait analysis in order to diagnose a gait disorder

or to decide on a treatment that may improve patients’ gait [4, 5]. When dealing with elderly patients, the

assessment of balance while standing and walking has proved to be a predictor of falls [6] and is related

to self-rated health status [7], cognitive impairment caused by dementia [8, 9], mortality and morbidity

[10, 11].

Over the years, several approaches have been employed to assess gait. In particular, previous publica-

tions have utilized various measurements systems for gait assessment such as camera systems (e.g., [12, 13]),

body-mounted accelerometers (e.g., [14, 15, 16, 17, 18, 19, 20, 21, 22]), force platforms (e.g., [1], [13, 23])

and gyroscopes (e.g., [24, 25, 26]). Force platforms and cameras have the advantage of providing a fixed

frame of reference whereas body-mounted systems enable subjects to cover longer distances [14].

Gait accelerometry has become a widely adopted approach [27] due to its reliability, high precision

and affordability [28]. It also enables computing a wide range of metrics to evaluate gait [29, 30, 27, 31].

Pre-processing of gait-accelerometry signals may be necessary to remove noise or minimize the effect of

gravity [14]. In previous publications it has been argued that a correction of the acceleration measurement is

necessary due to the spine lordosis in the L3 region, the imprecise positioning of the accelerometer, and the

effect of the gravity component over the measured accelerations [14]. Previous contributions also noticed

that gait acceloremtry signals can be noisy, and some denoising pre-processing may be needed in order to

be able to extract gait features (e.g., [32, 33]). However, pre-processing can have unintended consequences

such as determining potential group differences when they do not exist. It is therefore logical to question

the impact of pre-processing on the extracted gait features.

A multitude of processes can be applied to the acquired signals. In this study, we applied two pre-

processing operations used in gait analysis (e.g., [14, 31, 32, 33, 34, 35]): tilt correction and wavelet denois-

ing. As these are commonly applied pre-processing operations on gait accelerometry signals, the purpose

of this paper was to understand their influence on signal features calculated in time, frequency and time-

frequency domains using signals from different populations in order to understand whether pre-processing

operations have detrimental effects on our ability to discriminate amongst pathological groups. We first

extracted features from the raw signals. Then, we examined the effects of tilt correction on the extracted

features, followed by the effects of denoising on the extracted features. Lastly, we examined the effects of
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joint pre-processing, i.e., we applied both operations (correction and denoising) to the raw data. However,

to understand whether the order of operations play a significant role, we examined these effects using a

two-step approach. In the first step, we corrected data followed by the denoising operation. In the second

step, we denoised the data initially, followed by the correction operation.

Additionally, we explored whether the pre-processing operations affected the calculated acceleration

features differently in individuals with and without expected gait abnormalities by examining individuals

with Parkinson’s disease (PD), peripheral neuropathy (PN) and healthy older adults. The possible presence

of tremor, rigidity, and spinal inflexibility [36] in PD may impact both the position of the accelerometer

and signal quality. Similarly, persons with PN typically walk with a wider base of support [37], which

also may impact accelerometer recordings. Thus, pre-processing operations may have a greater impact on

the values of the extracted acceleration features for these clinical groups. As use of acceleration-based

outcomes measures is gaining grounds in rehabilitation randomized controlled trials, it is imperative that the

signal processing methodology becomes standardized, otherwise it will become difficult to comparatively

analyze the results of different trials.

The major contribution of this manuscript is our finding that pre-processing has an impact on extracted

gait accelerometry features especially after the application of tilt correction. It was important to understand

whether pre-processing schemes have detrimental effects on our ability to gain discriminate across patho-

logical groups, as no previous contribution has ever examined the effects of pre-processing operations on

features extracted from gait accelerometry signals. However, we need to point out that the manuscript fo-

cuses on two commonly used pre-processing schemes for gait accelerometry signals, and it is beyond the

scope of the current manuscript to comprehensively analyze all pre-processing approaches typically found

in other areas.

2. Methods

2.1. Data acquisition

A total of 35 patients aged 65-year-old and older were enrolled in the experiment: 14 were healthy con-

trols (HC), 10 had Parkinson’s disease (PD) and 11 had peripheral neuropathy (PN). All of them could walk

without human or mechanical assistance for at least 3 minutes. Details of participant have been reported

in a previous study [31]. All subjects were assessed using a structured history and physical exam to ensure

they met the general inclusion/exclusion criteria for the study. Potential subjects were excluded if they had

any undiagnosed neurological (e.g. abnormal neurological examination such as spasticity, or severe pare-

sis), musculoskeletal or cardiopulmonary conditions or inadequate hearing or vision that would interfere
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with walking. Additionally, eligibility for HCs required no diagnosed neurological, vestibular or sensory

disorders plus biothesiometer reading at the malleolus < 20 v bilaterally. PDs had established neurologist

diagnosis of Parkinson’s disease for at least one year according to Hoehn and Yahr scale rating of 2 or 3

and a bioesthesiometer measure reading at the malleolus < 20 v bilaterally. Subjects were on a stable dos-

ing schedule of Parkinson’s medications for the prior three months. Subjects with PN had biothesiometer

readings of≥ 40 v bilateraly, indicating lose of vibratory sense. Subjects meeting the inclusion criteria com-

pleted the baseline assessments that included an overground walk used to determine self-selected treadmill

speed.

Subjects meeting the inclusion/exclusion criteria walked on a computer-controlled treadmill (1.2 m wide

by 2 m long). Safety was ensured by a harness system. An accelerometer was attached firmly to each patient

over the L3 segment of the lumbar spine using a belt and a 4-inch wide elastic bandage wrapped over the

accelerometer and the trunk. Linear accelerations were measured along the medial-lateral (ML), vertical

(V) and anterior-posterior (AP) directions and sampled at 100 Hz. Participants completed walking trials

at their preferred speed (i.e., their comfortable walking speed). To establish preferred speed, the treadmill

speed was incrementally increased (e.g., 0.05 0.10 m/s) until a participant reported a comfortable walking

speed. Comfortable walking speeds were re-established for each participant by increasing and decreasing

treadmill speed [38]. At the beginning of each walking trial there was a ramp up period during which the

subject’s walking speed was slowly increased until their previously established preferred pace was reached.

After being accustomed to the instrumentation as well as walking on the treadmill, the subjects performed

a 3-minute walk at a desired (usual) pace. The average treadmill speed was 1.06±0.014 m/s ranging from

0.74 m/s to 1.30 m/s. No treadmill tilt was used in this experiment.

2.2. Data pre-processing

Dynamic tilt correction. In previous publications concerning gait analysis while walking [14, 39], it has

been argued that a correction of the acceleration measurement is necessary due to the spine lordosis in the

L3 region, the imprecise positioning of the accelerometer, and the effect of the gravity component over the

measured accelerations. We performed tilt correction using the method developed by Moe-Nilssen [14].

Coordinates of the accelerometer were rotated to earth-vertical (Figure 1).

The accelerometer is situated near the L3 lumbar vertebra which minimizes the transverse plane offset

rotation of the device. Therefore we assume that the AP acceleration is situated in the sagittal plane. θAP

and θML are the angles between the transverse plane and the measured accelerations. aH−AP and aH−ML

are projections of the measured accelerations in the new coordinate system. aV ′ is the temporary corrected

vertical acceleration i.e the acceleration after correcting the measured one in the AP plane and aV is the
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vertical acceleration in the new coordinate system. Angles are positive above the horizontal axis and positive

axes are horizontal to the right and vertical up.

The following equations operate the coordinate transform:

In the sagittal plane

aH−AP = aAP cos(θAP)−av sin(θAP) (1)

aV ′ = aAP sin(θAP)+av cos(θAP) (2)

In the coronal plane

aH−ML = aML cos(θML)−aV ′ sin(θML) (3)

aV = aML sin(θML)+aV ′ cos(θML)−g (4)

where g is the gravity vector. Since the acceleration unit is g, we have g = 1.

Moe-Nilssen [14] showed that the quantities sin(θAP) and sin(θML) can be approximated by the mean

of the accelerations in the AP and ML directions respectively for a large number of samples. The ith sample

in the jth anatomical direction ai, j (with j = {AP, ML}) can indeed be decomposed in two terms: one is the

measured change of velocity ac(i, j), the other is the static gravity component ag(i, j):

a(i,j) = ac(i, j)+ag(i, j) (5)

The expected value of the measured accelerations can be expressed as follows:

E[a(i, j)] = lim
n→∞

1
n

n

∑
i=1

a(i, j) ≈ a j (6)

Replacing the acceleration by the expression of a velocity change leads to the following expression:

E[ac(i, j)] = lim
n→∞

1
n

n

∑
i=1

ac(i, j)

= lim
n→∞

1
n+1

n+1

∑
i=1

v(i, j)− v(i−1, j)

∆t

= lim
n→∞

v(n+1, j)− v(1, j)
(n+1)∆t

= 0 (7)

where ∆t denotes the sampling time. Assuming θ j is constant we have:

E[ag(i, j)] = lim
n→∞

1
n

n

∑
i=1

ag(i, j) = ag(i, j) (8)

since the gravity vector is constant. Recalling equation 5, we have

E[a(i, j)] = E[ac(i, j)]+E[ag(i, j)] = E[ag(i, j)] (9)
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Hence

a j = ag(i, j) (10)

The gravity vector can be decomposed according to the measured accelerations:

g =−sin(θAP)aAP + cos(θAP)av (11)

Finally, the approximation of the angles for a large number of samples is given by:

a j = sin(θ j) (12)

Once these values are known, the estimated accelerations can be calculated.

Wavelet denoising. Gait accelerometry signals can be corrupted by noise generated by the measurement

device. Therefore, a 10-level discrete wavelet transform using Meyer’s discrete wavelet and soft threshold-

ing [40] was applied to the data. The wavelet analysis is a signal processing tool used to complement the

Fourier analysis for understanding the nonstationary nature of many signals, especially biomedical signals

(e.g., [41, 42, 43, 44, 45]).

Indeed the Fourier transform decomposes a signal in terms of complex exponential functions eiωt using

the following formula:

f̂ (ω) =
∫ +∞

−∞

f (t)e−iωtdt (13)

where f is a signal and f̂ its Fourier transform.

In wavelet theory, the complex exponential function is replaced by a function ψ(t) called the mother

wavelet having defined characteristics [46]:∫ +∞

−∞

|ψ(t)|dt = 0 (14)∫ +∞

−∞

|ψ(t)|2dt < ∞ (15)

The first equation sets a zero-mean condition on the mother wavelet while the second one indicates it has

finite energy. The mother wavelet is scaled and shifted giving new wavelets which will be used to correlate

the signal to analyze [46, 47]:

Cu,s =
∫ +∞

−∞

f (t)ψ∗u,s(t)dt (16)

where

ψu,s(t) =
1√
s
ψ(

t−u
s

) (17)
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The coefficients Cu,s are the results of a continuous wavelet transform (CWT). However, the CWT im-

plies an infinite number of dilatation and translation operations, which makes it almost impractical in reality.

Hence, there was a need for a method to use a reduced number of dilatation and translation operations, while

being able to obtain a good reconstruction of the original signal. In 1989, Mallat proposed an algorithm that

implements a fast discrete wavelet transform by using a combination of high and low-pass filters [48]. This

technique is also known as sub-band coding in the signal processing community. Figure 2 describes how

the algorithm was designed.

Mallat’s algorithm provides a signal representation in terms of the decomposition coefficients. These

coefficients can be then manipulated to process the signal. Wavelet denoising is a signal operation consisting

of applying a threshold on each signal coefficient [40, 49]. The threshold T is based on the 1st-level detail

signal d1 and was calculated as follows [43]:

T =
med(|d1|)

√
2logn

0.6745

where med is the median function and n is the length of the signal. The idea is that the coefficients associated

with noise are below the threshold value, while the coefficients associated with the signal are above the

threshold value. Thus wavelet denoising is a more powerful tool compared to the classical low-pass filtering

(e.g. using a Butterworth filter) as it enables to remove noise from the whole frequency spectrum.

2.3. Feature extraction

After the pre-processing stage, statistical, frequency and time-frequency features were extracted from

the acceleration signals.

2.3.1. Time and stride interval related features

A general form of signal can be defined as X = {x1,x2, . . . ,xn}. Then, the following parameters can be

extracted [50]:

• The standard deviation which characterizes the variability of signals was defined as follows:

σX =

√
1

n−1

n

∑
i=1

(xi−µX)2 (18)

with µX being the mean of the signal.

• The skewness which characterizes the asymmetry of signals was defined as follows:

ξX =
1
n ∑

n
i=1(xi−µX)

3

(1
n ∑

n
i=1(xi−µX)2)

3
2

(19)

7



• The kurtosis which characterizes the behavior of extreme data points was defined as follows:

γX =
1
n ∑

n
i=1(xi−µX)

4

(1
n ∑

n
i=1(xi−µX)2)2

(20)

• The cross-correlation coefficient at the zeroth lag of two signals X = {x1,x2, . . . ,xn} and Y = {y1,y2, . . . ,yn}

defined as follows:

ηX ,Y =
∑

n
i=1(xi−µX)(yi−µY )√

∑
n
i=1(xi−µX)2

√
∑

n
i=1(yi−µY )2

(21)

with µX and µY being the mean of signals X and Y.

Finally, calculating harmonic ratios is a way to assess smoothness of walking [51], [52]. Therefore we

computed the harmonic ratios of low-pass filtered acceleration signals in every anatomical direction for

each stride. The cutoff frequency of the filter was set to 30 Hz. First the discrete Fourier transform was

calculated:

astride =
N−1

∑
n=0

Cn sin(nω0t +φn) (22)

where Cn is the harmonic coefficient, ω0 is the stride frequency and φn is the phase. We then summed the

first 20 harmonic coefficients to compute the harmonic ratios. The latter are defined as follows:

HRAP and V =

〈
∑

20
n=2,4,6,...Cn

∑
20
n=1,3,5,...Cn

〉
(23)

HRML =

〈
∑

20
n=1,3,5,...Cn

∑
20
n=2,4,6,...Cn

〉
(24)

where 〈∑Cn/∑Cn〉 is the average ratio over all strides.

2.3.2. Frequency features

The following characteristics were identified in the frequency domain [53]:

• The peak frequency defined by:

fp = argmax
f∈[0, fmax]

|FX( f )|2 (25)

where FX( f ) is the Fourier transform of the signal and fmax is the sampling frequency (100 Hz in this

experiment)

• The spectral centroid defined by:

fc =

∫ fmax
0 f |Fx( f )|2d f∫ fmax
0 |FX( f )|2d f

(26)
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• The bandwidth defined by:

BW =

√√√√∫ fmax
0 ( f − fc)|FX( f )|2d f∫ fmax

0 |FX( f )|2d f
(27)

2.3.3. Time-frequency features

We also took into account features in the time-frequency domain. A 10-level discrete wavelet transform

was applied using discrete Meyer’s wavelet [54]. The decomposition can be written as WX = [a10 d10 d9 . . .d1]

where a10 is the approximation signal and dk is the kth-level detail signal.

• The relative energy in each wavelet decomposition level was computed as follows:

The expression of the approximation signal energy is

Ea10 = ‖a10‖2 (28)

‖•‖ being the Euclidean norm.

The kth-level detail signal energy is expressed as follows:

Edk = ‖dk‖2 (29)

The total energy in the signal is:

ET = a10 +
10

∑
k=1

Edk (30)

Finally the relative energy in each decomposition level is:

Φa =
Ea10

ET
×100% (31)

Φd =
Edk

ET
×100% (32)

• Using the previously computed wavelet energy features, the wavelet entropy was calculated as fol-

lows:

ΘX =−Φa10 log2 Φa10−
10

∑
k=1

Φdk log2 Φdk (33)

2.4. Data analysis

In order to identify differences between participant groups and processing methods, we fit a series of

linear mixed models with each extracted feature as the dependent variable; participant group, processing

method and their interaction as fixed effects of interest; and a participant random effect to account for mul-

tiple measurements from the same participants and resulting stochastic non-independence of observations.
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We used appropriately constructed means contrasts to compare processing methods within each participant

group, compare participant groups under each processing method, and compare participant group differ-

ences across processing methods. To compare anatomical directions, we first computed three anatomical

direction differences in each of the extracted feature. Next we fitted a similar linear mixed model with each

of the anatomical direction differences as the dependent variable; participant group, processing method and

their interaction as fixed effects of interest; and a participant random effect. We used least squares means to

estimate anatomical direction differences within each participant group and processing method combination.

The significance level α was set to 0.05.

SAS version 9.3 (SAS Institute, Inc., Cary, North Carolina) was used for all statistical analyses.

3. Results

The results of our analysis are summarized hereafter. Features are analyzed for each pre-proccesing

operation and are compared to the original data.

3.1. Time and stride interval related features

Tables 1 and 2 summarize the differences found for the time domain features.

3.1.1. Original data

Group differences. We did not observe any differences between groups in any directions when considering

the variability of signals σ (p > 0.10). When considering the skewness of signals, we found no statistical

differences between groups along every direction (p > 0.09). Kurtosis values did not differ significantly

for any group (p > 0.29) neither. Finally, we found that ηML,V values were different between PD and PN

subjects (p < 0.02). HC subjects also had greater harmonic ratios than PD subjects along every anatomical

direction (p < 0.03).

Anatomical directions differences. Variability of signals statistically differed between anatomical directions

for each group (p < 0.01). When we examined skewness of signals we found differences between every

anatomical direction for each group (p� 0.01) except between ξML and ξAP for PD subjects (p > 0.26).

For HC patients, the behavior of extreme points was different between the ML and V directions (p < 0.02).

Also, differences between ηML,V and ηV,AP as well as between ηML,AP and ηV,AP were identified for HC

and PN subjects (p� 0.01). Each group had higher harmonic ratios in the V direction than in the ML

direction (p� 0.01). Moreover, HCs and PNs had greater ratios in the AP direction than in the ML direction

(p� 0.01). Finally, PN patients had a greater ratio in the V direction rather than in the AP direction

(p < 0.02).
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3.1.2. Corrected data

Group differences. As shown in Figure 3, the correction shifted the signals to zero mean. The variability

and kurtosis of signals followed the same trend as the uncorrected signals. Few changes between original

and corrected data were noticed when analyzing asymmetry of signals (ξ feature). A difference between

HC and PN participants was present in the corrected data along the ML axis (p < 0.01). Lastly, for ηML,V

we did not find differences between PD and PN (p > 0.92). We also found that HCs had higher harmonic

ratios than PNs in the AP direction (p < 0.04). Moreover the ratio along the V-axis was found higher for

PNs than for PDs (p < 0.04).

Anatomical directions differences. The standard deviations of signals in the ML and AP directions were not

different for PN and PD groups after correction (p > 0.14). We examined skewness of signals but did not

find differences between the ML and AP directions for PN subjects (p > 0.73) anymore. The comparison of

ηML,V and ηML,AP lead to no significant difference (p > 0.68). Lastly, the statistical difference for harmonic

ratios between ML and AP disappeared for PN participants (p > 0.15). A new significant difference for

HC controls and PD subjects was noticed: the ratio in the vertical direction was higher than in the anterior-

posterior direction (p < 0.01).

3.1.3. Denoised data

Group differences. When considering the statistical features, we noticed a difference in standard deviations

between HC and PD participants along the AP direction (p < 0.05) compared to the raw data. Skewness,

kurtosis and cross-correlations followed the same trend as for the raw signals. For harmonic ratios, we found

no difference between HC subjects and PD ones (p > 0.10) along the ML direction.

Anatomical directions differences. No changes in values for standard deviation, skewness and cross-correlation,

and harmonic ratios could be noticed after denoising. The kurtosis difference between the ML and V di-

rections did not appear anymore for HC patients (p > 0.14). For the PN group, γAP was different from γML

(p < 0.05).

3.1.4. Corrected and denoised data

Groups differences. Skewness values were different between HCs and PNs (p < 0.01) along the ML-axis

and between HCs and PDs along the AP-axis (p < 0.05). PD and PN groups were not significantly different

for ηML,V values (p > 0.70). Harmonic ratios were not statistically different between HCs and PDs along

the ML-axis (p > 0.1). We also found that HC controls had greater harmonic ratios than PN subjects in

the AP direction (p < 0.03). Moreover, PNs had a greater harmonic ratio than PDs in the vertical direction

(p < 0.05).
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Anatomical directions differences. Our results showed that standard deviations were not statistically differ-

ent in in the ML/AP directions for PN (p > 0.56) nor for PD groups (p > 0.45). No difference was observed

for PN subjects when comparing ξML and ξAP (p > 0.81). The kurtosis of signals measured in all three

directions were different for PNs (p < 0.03) and PD subjects (p < 0.05). No difference in kurtosis values

could be observed between the V and ML directions for HC patients (p > 0.24). Finally for PD patients,

ηML,V and ηV,AP were not statistically different (p > 0.43). Harmonic ratios were not different between

the ML and AP directions for PNs (p > 0.51). We also observed that HC and PD subjects had a greater

harmonic ratio in the vertical direction than in the anterior-posterior one (p < 0.02).

3.1.5. Denoised and corrected data

Group differences. The results were almost identical to the results obtained when performing tilt correction

followed by denoising, except that skewness of signals measured along the ML-axis was different between

HC and PN groups (p < 0.01).

Anatomical direction differences. Similar results to tilt correction followed by denoising were obtained for

this preprocessing step. However, no statistical differences between the values of ηML,V and ηML,AP were

observed for PD subjects.

3.2. Frequency features

Tables 3 and 4 summarize the differences found for the frequency domain features.

3.2.1. Original data

Group differences. No statistical differences for the peak frequencies were observed between groups (p >

0.10). The spectral centroids exhibited differences between HC and PD subjects for signals acquired along

the AP-axis (p < 0.03). We finally noticed that signals measured on HC and PD subjects had different

bandwidths in the ML and AP directions (p < 0.03).

Anatomical direction differences. When we analyzed peak frequencies, we observed statistical differences

for PNs and PDs between the ML and V directions and between the ML and AP directions (p < 0.02). The

spectral centroids were statistically different between the ML and V directions for all groups (p < 0.02) and

between the V and AP directions for PN and PD groups (p� 0.01). Finally, we observed differences for

all groups between bandwidths of signals acquired along the V and AP directions (p� 0.01) as well as

between the ML and V directions (p� 0.01).
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3.2.2. Corrected data

Group differences. In the ML direction we found that signals retrieved from HC subjects had greater peak

frequencies than PD (p < 0.02) and PN (p < 0.03) patients. For spectral centroids, we observed a difference

between PN and HC groups (p < 0.04) when looking at fcAP. Lastly, BWAP values were different for PN

and HC volunteers (p < 0.04).

Anatomical direction differences. HC subjects had different spectral centroids when we compared signals

along the AP-axis and V-axis (p < 0.03). For PNs, we also found that fcAP was greater than fcML (p < 0.03).

Differences between bandwidths of signals in the AP and ML directions were found for PN (p < 0.03) and

PD groups (p < 0.05).

Anatomical direction differences. After denoising signals, we did not observe differences for any group

between the ML and V directions when we analyzed spectral centroids (p > 0.05). However, we observed

different centroid values between signals in the AP and ML directions for PN subjects (p < 0.04). Band-

widths for signals along the ML and V directions were not statistically different for HCs (p > 0.06). Signals

from PN subjects had different bandwidth values in the AP and ML directions (p < 0.04).

3.2.3. Corrected and denoised

Group differences. When comparing centroids for the corrected-denoised data and the raw data, we found

that spectral centroids were different between PN and HC groups for signals measured in the AP direction

(p < 0.05). The same trend could be observed for the bandwidth of these signals (p < 0.01).

Anatomical direction differences. We noticed that spectral centroids fcML did not differ significantly from

fcV for PN (p > 0.49) and PD subjects (p > 0.05) after pre-processing signals. However, statistical differ-

ences between the ML and AP directions were observed for PN subjects only (p < 0.02). Bandwidths of

signals in the AP and ML directions were different for PN and PD subjects (p < 0.01).

3.2.4. Denoised and corrected data

Group differences. The same results were obtained as for performing tilt correction followed by denoising.

Anatomical direction differences. Significant differences were observed between peak frequencies of sig-

nals in the V and AP directions for PN subjects (p� 0.01). Otherwise the same trend as the corrected-

denoised data was observed.
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3.2.5. Denoised data

Group differences. No differences for fcAP were found between HC and PD groups after denoising signals

(p > 0.05). PN and HC groups had different bandwidths along the AP-axis (p < 0.02).

3.3. Time-frequency features

The four last detail level coefficients held nearly no energy. Thus, we did not consider these levels any

further. Denoising did not affect the energy in the time-frequency bands. However applying correction

changed the repartition of the energy. Indeed in the vertical direction the energy of the approximation signal

decreased whereas the one in the 10th to the 5th detail signal increased. Depending on the decomposed

signal studied differences between groups and anatomical directions were also observed. When both pre-

processing operations were applied we could observe similar results to the ones we observed when applying

correction only.

3.3.1. Original data

Group differences. We did not observe significant groups differences in any time-frequency band for accel-

erations measured along the medio-lateral axis (p > 0.06). More than 99% of the energy of the V acceler-

ation signals was concentrated in the approximation level. We discarded the rest of the coefficients in the

V direction as the detail signals contained insignificant amounts of energy. However, no group differences

could be seen along this axis (p > 0.98) or the AP axis (p > 0.40). No group differences were observed for

the wavelet entropy of signals (p > 0.17).

Anatomical direction differences. For all groups, the a10 coefficients from the V direction contained higher

energy than the same coefficients in the ML (p� 0.01) and AP direction (p < 0.04). Also, HCs had

higher energy contained in a10 coefficients in the AP direction than in the ML direction (p < 0.04). d8

coefficients contained higher energy in the ML direction than in the V direction for all groups (p < 0.04)

and in comparison to the AP direction for the HC group (p� 0.01). Signals from PD subjects had higher

energy in the AP direction compared to the signals in the V direction (p < 0.04). In the 7th decomposition

level, the energy was higher for signals retrieved along the ML-axis compared to those along the V direction

(p� 0.01) and the AP direction (p < 0.03) for HC subjects. However no difference was noticed when we

compared the signals in the V and AP directions (p> 0.08). In any direction, no differences were noticed for

the other groups (p > 0.2). We noticed that the energy was lower for d6 signals along the V-axis compared

to those along the AP-axis for HCs (p < 0.01). For all groups, the energy in d5 signals was higher along the

ML-axis than the V-axis (p < 0.04). For PD subjects, we noticed that signals in the ML direction had higher
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energy compared to the AP direction (p < 0.05). We did not observed any difference when we compared

signals in the V and AP directions (p > 0.22).

Interestingly we noticed that for each group the entropy values in the V direction were close to 0 while

they were higher in the other directions (p� 0.01). We also noticed that ΘML was higher than ΘAP for HCs

(p < 0.01) and PD subjects (p < 0.02), while we observed no difference for PN subjects (p > 0.1).

3.3.2. Corrected data

Group differences. After the correction step, we noticed that the energy in wavelet decomposition levels

was repartitioned for every group in every direction. HCs had higher energy than PD subjects along the

ML-axis in the d7 signal (p� 0.01). The same results were obtained for HCs and PNs when we analyzed

the d7 (p < 0.02) and d5 (p < 0.05) detail signals along the same direction. In the V direction, while most of

the energy was concentrated in the approximation signal for the raw data, the energy in the approximation

signal after correction diminished and increased in the first 6 detail signals ΦVd10
,ΦVd9

, . . . ,ΦVd5
(p� 0.01).

However, we did not notice any group differences along the V-axis. Statistical differences along the AP-axis

were observed in the d7 signals between HC and PD/PN subjects (p < 0.02) and in the d6 detail signals

between HCs and PNs (p < 0.05).

Overall the entropy in the V direction was lower than in the other directions. However for PN and

PD subjects it was not statistically different from the entropy in the ML direction (p > 0.19) and from the

entropy in the AP direction for PN patients (p > 0.06). Finally ΘML and ΘAP were not statistically different

for any group (p > 0.28).

Anatomical direction differences. After correction there were no significant differences between a10 signals

in the V and ML direction and signals in the V and AP directions for all groups (p > 0.05). However, we

observed that signals from PDs had higher energy in the ML direction than the AP direction (p < 0.04). The

energy in the d8 signals was not distinguishable between the ML and V directions for PDs (p > 0.26) and

PNs (p > 0.44). For PDs, we were unable to distinguish between the V and AP directions (p > 0.59). HCs

had no statistical differences in d7 signals between ML and V/AP directions (p > 0.09). PDs had higher

energy for the signals along the V-axis than for signals along the ML-axis (p < 0.05). We also observed

that signals for all three groups in the 6th decomposition level had higher energy in the V direction than

in the ML direction (p� 0.01). The same results were obtain when we compared signals in the AP and

ML directions (p� 0.01). For HCs in particular, there were no difference between signals in the V and

AP directions (p > 0.45). For PN subjects, energy in the V direction was higher than in the AP direction

(p� 0.01). Finally the energy was higher in d5 signals in the ML direction than in the AP direction for PN
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patients (p� 0.01) but we were unable to distinguish between signals in the ML and V directions for HCs

and PDs (p > 0.14) nor between signals in the ML and AP directions for PD subjects (p > 0.29).

We found no significant difference between ΘML and ΘV for PD and PN subjects after correction (p >

0.19), nor between ΘML and ΘAP for HC and PD subjects (p > 0.28) nor between ΘAP and ΘV for PN

subjects (p > 0.06).

3.3.3. Denoised data

Group differences. The energy repartition for denoised data was similar to the original signal. We still had

more than 99% of the energy concentrated in the approximation signal ΦVa10 . The energy and the entropy

of the signals followed the same trend as the original ones.

Anatomical direction differences. When we analyzed the a10 signals there was no significantly different

energy between signals in the V and AP directions for PD and PN subjects (p > 0.05). For healthy subjects

we were not able to distinguish between signals in the AP and the ML directions (p > 0.06). Similarly for

PD subjects, we were not able to distinguish between signals along the V-axis and the ML-axis (p > 0.05).

The signals in the 8th decomposition level followed the same trend as the corresponding corrected signals

while d7 and d6 signals followed the same same trend as the corresponding raw signals. Lastly we analyzed

d5 signals and we noticed for PNs that energy was higher in signals in the ML direction compared to

accelerations in the AP direction (p < 0.04). This was not case however for PD patients (p > 0.07).

The entropy of signals in the ML direction was not significantly different from the one of signals in the

AP direction for the PD group (p > 0.25). Otherwise the entropy of denoised signals followed the same

trend as the raw signals.

3.3.4. Corrected and denoised data

Groups differences. Similarly to the corrected signals the repartition of the energy was different. In the ML

direction, the energy in the approximation signal a10 was higher for PD subjects than for HC ones (p< 0.04).

On the contrary, there was more energy in the d7 (p� 0.01) and d6 (p < 0.04) signals for healthy controls

than for PD patients. The energy in the d8 (p < 0.04) and d7 (p� 0.01) signals was also higher for healthy

controls than for PN subjects. Still along the ML-axis, PN patients had higher energy than HCs in the d5

signal (p < 0.02). In the V direction the relative energy of the d6 signal was lower for PDs than for PNs

(p < 0.01). In the d5 signal the opposite was observed (p < 0.01). In the AP direction the energy in the d7

and d6 signals was higher for the HC group than for the PD (p < 0.04) and PN groups (p < 0.02). Also, the

energy in the d5 signal was higher for PD subjects compared to PNs (p < 0.03).
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No difference between groups were observed when we analyzed entropies in every direction (p > 0.18).

We did not observed differences between anatomical directions neither for PDs and PNs (p > 0.15). Only

signals from healthy controls had a larger entropy along the ML-axis (p < 0.05) and AP-axis (p < 0.04)

compared to the V-axis.

Anatomical direction differences. The energy in the a10 signals was similar to the energy in signals after

correction. However for PN subjects, we observed that signals in the V direction contained less energy than

signals in the ML direction (p < 0.04). For the same group of subjects, the energy along the V-axis was also

lower than energy in signals along the AP-axis (p < 0.05). In the d7 signals PD subjects had higher energy

in the V direction than in the ML (p < 0.03) and AP directions (p < 0.04). Results for the d8, d6 and d5

signals were the same as the corresponding signals after the correction step. The same trend as for corrected

signals was observed when we examined the wavelet entropy differences, except that ΘAP and ΘV were not

statistically different for PDs (p > 0.15).

3.3.5. Denoised and corrected data

Group differences. The results were very similar to the ones we found in the previous step. Energy in signals

from PD subjects was higher than in signals measured on HCs in the V direction (p < 0.05).

Anatomical direction differences. The same trend was observed compared to accelerations in the previous

step except that we did not observe a significant difference of energy between signals in the AP and V

directions for PN subjects in the a10 approximation signal (p > 0.05) nor for PD subjects in the d7 detail

signal (p > 0.07). The entropy after the denoised-corrected step followed the same trend as the previous

step.

4. Discussion

The major impact of this work is on the analysis of gait accelerometry signals. Our results conclusively

show that pre-processing operations such as tilt correction can yield additional discrimination amongst pa-

tient groups, while other pre-processing operations such as wavelet denoising have no impacts on discrimi-

natory patterns observed in gait accelerometry signals. Our findings therefore imply it is beneficial to pre-

process gait accelerometry signals, but also imply that during a gait assessment procedure, accelerometers

do not need to be positioned perfectly perpendicular to the walking surface, as the tilt correction procedure

can be used to remove the tilt effects without detrimental effects on the analysis results.

We successfully extracted features in time, frequency, time-frequency domains. In the time domain,

by applying the tilt correction, we were able to distinguish between healthy controls and subjects with
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Parkinson’s disease and peripheral neuropathy. Specifically, we observed greater skewness for subjects

suffering from peripheral neuropathy than for healthy controls in the medio-lateral direction. Nevertheless,

no difference between participants having Parkinson’s disease and peripheral neuropathy could be observed

using this feature. Concerning harmonic ratios, using the original data the only group differences found were

between healthy controls and persons with Parkinson’s disease, where controls exhibited greater walking

symmetry in all directions of motion. The tilt correction led to further discrimination between the groups

and showed that participants with peripheral neuropathy had a greater symmetry than those with Parkinson’s

disease, whereas healthy controls had a greater symmetry than subjects with peripheral neuropathy. Also

the tilt correction showed that every group had a harmonic ratio higher in the vertical than in the anterior-

posterior direction.

In the frequency domain and after tilt correction was applied, peak frequencies in the medio-lateral

direction and the spectral centroids in the anterio-posterior direction allowed to distinguish between controls

and clinical groups. Also, the bandwidth of signals for subjects with peripheral neuropathy was greater than

for healthy control in the anterior-posterior direction after applying tilt correction.

Time-frequency features were the most difficult to analyze. An obvious observation is that the appli-

cation of tilt correction changed the energy repartition for every group especially in the vertical direction.

The energy was transferred from the approximation signal representing low frequencies to the six first detail

signals representing higher frequencies. However it was difficult to distinguish between groups using the

features in this domain.

Denoising had practically no effect on the calculated characteristics since, as shown on Figure 3, the

signals had a low level of noise. Finally, when applying both correction and denoising we observed that

the results were most of the time the accumulation of the results found when we applied the preprocesses

separately.

We believe that tilt correction should be applied to gait accelerometry signals regardless of one’s intends

to analyze gait accelerometry axes independently, as in this manuscript, or jointly through a resultant vector.

With no tilt corrections, the resultant vector denoting walking acceleration would point to an incorrect

direction, even if the three anatomical axes are analyzed jointly.

The presented results open up a potential research area dealing with the gait assessment using smart

phones. We believe that our results are applicable in those cases as well, as long as smart phones are affixed

to a human body in order to avoid non-motion related acceleration components.

Additional features can be extracted if accelerometers are attached to legs/ankles. These additional

features can be very advantageous for machine learning applications, which aim to differentiate gait among

different pathological groups. However, it may be difficult to relate every feature to a clinical outcome.

18



In these cases, advanced machine learning approaches such as neural networks and artificial intelligence

algorithms are suitable to relate a group of features to specific clinical outcomes. These machine learning

algorithms can be also used to differentiate between patient groups if needed.

5. Conclusion

As accelerometry becomes more widely used to assess age- and disease-related differences in the motor

control of walking and changes in gait control with rehabilitation, it is critical that researchers adopt sim-

ilar methods of pre-processing acceleration data. This will allow for valid comparisons of findings across

studies. In this paper, we pre-processed gait accelerometry signals using different techniques in order to un-

derstand the impact on the extracted signal features in time, frequency and time-frequency domains. Specif-

ically, we examined the effects of tilt correction and denoising as well as their combined effects. Our data

indicate that denoising had minimal or no effect on extracted signal features while tilt correction yielded ad-

ditional discrimination between healthy and clinical groups. Hence, while denoising may not be necessary

for pre-processing of the acceleration signals, tilt correction is recommended as an important component

of their pre-processing. Future studies should therefore consider pre-processing gait accelerometry signals

before extracting any features.

6. Acknowledgements

This work was supported in part by the Pittsburgh Claude D. Pepper Older Americans Independence

Center (NIA P30 AG 024827).

References

[1] D. Winter, Human balance and posture control during standing and walking, Gait and Posture 3 (1995)

193–214.

[2] J. D. Schaafsma, N. Giladi, Y. Balach, A. L. Bartels, T. Gurevich, J. M. Hausdorff, Gait dynamics in

parkinson’s disease: relationship to parkinsonian features, falls and response to levodopa, Journal of

the Neurological Sciences 212 (2003) 47–53.

[3] H. B. Menz, S. R. Lord, R. C. Fitzpatrick, Acceleration patterns of the head and pelvis when walking

on level and irregular surfaces, Gait and Posture 18 (2003) 35–46.

[4] R. Rozendal, Clinical gait analysis: Problems and solutions?, Human Movement Science 10 (1991)

555–564.

19



[5] M. W. Whittle, Clinical gait analysis: A review, Human Movement Science 15 (1996) 369–387.

[6] J. S. Brach, J. E. Berlin, J. M. VanSwearing, A. B. Newman, S. A. Studenski, Too much or too little

step width variability is associated with a fall history in older persons who walk at or near normal gait

speed, Journal of NeuroEngineering and Rehabilitation 2 (2005) 21.
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Tables

Table 1: Group differences for features in the time domain. Legend - N.S: Not Significant; ×: no difference compared to raw data;

4: HC vs. PN; ♦: HC vs. PD; �: PD vs. PN; +/-: feature added/removed compared to original data.

Original Corrected Denoised Corrected + denoised Denoised + corrected

Standard deviation

σML N.S. × × × ×

σV N.S. × × × ×

σAP N.S. × +HC > PD × ×

Skewness

ξML N.S. +PN > HC × +PN > HC +PN > HC

ξV N.S. × × × ×

ξAP N.S. × × +HC > PD ×

Kurtosis

γML N.S. × × × ×

γV N.S. × × × ×

γAP N.S. × × × ×

Cross-correlation

ηML,V PD > PN −� × −� −�

ηML,AP N.S. × × × ×

ηV,AP N.S. × × × ×

Harmonic ratio

HRML HC > PD × −♦ −♦ −♦

HRV HC > PD +PN > PD × +PN > PD +PN > PD

HRAP HC > PD +HC > PN × +HC > PN +HC > PN
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Table 2: Differences between anatomical directions for statistical features. For pre-processed data, only the differences with the

original data are shown. Legend - N.S: Not Significant; ×: no difference compared to raw data; 4: ML vs. V (ML,V vs. ML,AP

for η); ♦: ML vs. AP (ML,V vs. V,AP for η); �: V vs. AP (ML,AP vs. V,AP for η); +/-: feature added/removed compared to

original data
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Table 3: Group differences for frequency features. Legend - N.S: Not Significant; ×: no difference compared to raw data; 4: HC

vs. PN; ♦: HC vs. PD; �: PD vs. PN; +/-: feature added/removed compared to original data

Original Corrected Denoised Corrected + denoised Denoised + corrected

Peak frequency

fpML N.S.
+HC > PD

× × ×
+HC > PN

fpV N.S. × × × ×

fpAP N.S. × × × ×

Centroid

fcML N.S. × × × ×

fcV N.S. × × × ×

fcAP PD > HC +PN > HC −♦ +PN > HC +PN > HC

Bandwidth

BWML PD > HC × × × ×

BWV N.S. × × × ×

BWAP PD > HC +PN > HC +PN > HC +PN > HC +PN > HC
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Table 4: Differences between anatomical directions for frequency features. For pre-processed data, only the differences with the

original data are shown. Legend - N.S: Not Significant; ×: no differences compared to the original; 4: ML vs. V (ML,V vs.

ML,AP for η); ♦: ML vs. AP (ML,V vs. V,AP for η); �: V vs. AP (ML,AP vs. V,AP for η); +/-: feature added/removed

compared to original data
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Figure captions

Figure 1 - Acceleration vectors and their projection in the earth-vertical coordinate system: on the left

accelerations in the sagittal plane; on the right accelerations in the coronal plane. aAP, aML and av denote

the measured accelerations in the AP, ML and V directions respectively.

Figure 2 - Fast wavelet transform algorithm: the signal s goes through a high-pass and a low-pass filter.

The resulting signals are downsampled (one sample out of 2 is kept) so as to avoid data redundancy. The

approximation signal A1 and the detail signal D1 are obtained. The n-level decomposition of the signal is

computed by performing the same operation on the approximation signals obtained successively. The de-

composition of the signal is given by the sequence [An Dn Dn−1 . . . D1].

Figure 3 - Comparison of signals before and after tilt correction for a HC control.
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Figure 1: Acceleration vectors and their projection in the earth-vertical coordinate system: on the left accelerations in the sagittal

plane; on the right accelerations in the coronal plane. aAP, aML and av denote the measured accelerations in the AP, ML and V

directions respectively.
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s
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Low-pass 2

D1
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Low-pass 2 A2
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Figure 2: Fast wavelet transform algorithm: the signal s goes through a high-pass and a low-pass filter. The resulting signals are

downsampled (one sample out of 2 is kept) so as to avoid data redundancy. The approximation signal A1 and the detail signal D1

are obtained. The n-level decomposition of the signal is computed by performing the same operation on the approximation signals

obtained successively. The decomposition of the signal is given by the sequence [An Dn Dn−1 . . . D1].
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Figure 3: Comparison of signals before and after tilt correction for a HC control
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